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ABSTRACT

Motivation: A tool that simultaneously aligns multiple protein

sequences, automatically utilizes information about protein domains,

and has a good compromise between speed and accuracy will have

practical advantages over current tools.

Results: We describe COBALT, a constraint based alignment

tool that implements a general framework for multiple alignment of

protein sequences. COBALT finds a collection of pairwise

constraints derived from database searches, sequence similarity

and user input, combines these pairwise constraints, and then

incorporates them into a progressive multiple alignment. We show

that using constraints derived from the conserved domain database

(CDD) and PROSITE protein-motif database improves COBALT’s

alignment quality. We also show that COBALT has reasonable

runtime performance and alignment accuracy comparable to or

exceeding that of other tools for a broad range of problems.

Availability: COBALT is included in the NCBI Cþþ toolkit. A Linux

executable for COBALT, and CDD and PROSITE data used is

available at: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt

Contact: richa@helix.nih.gov

1 INTRODUCTION

The simultaneous alignment of multiple sequences (multiple

alignment) serves as a building block in several fields of

computational biology (Gotoh, 1999), such as phylogenetic

studies (Fleissner et al., 2005), detection of conserved

motifs (Frith et al., 2004), prediction of functional residues
and secondary structure (Livingstone and Barton, 1996),

prediction of correlations (Socolich et al., 2005) and even

quality assessment of protein sequences (Bianchetti et al., 2005).

The development of algorithms that can automatically produce

biologically plausible multiple alignments is a subject of very
active research (Edgar and Batzoglou, 2006; Notredame, 2002).

Unfortunately, finding a multiple alignment that rigorously

optimizes the commonly used ‘sum-of-pairs’ scoring measure is

computationally hard (Wang and Jiang, 1994) and not practical

when more than a few sequences are involved (Li et al., 2000).
This has led to an arsenal of approximation techniques from

graph theory (Gupta et al., 1995; Kobayashi and Imai, 1998)

combinatorial optimization (Notredame and Higgins, 1996;

Zhong, 2002) and probability theory (Do et al., 2005).
Most of the popular modern algorithms designed for

multiple alignment of more than a few sequences, such as

ClustalW (Thompson et al., 1994), MUSCLE (Edgar, 2004a,b),

ProbCons (Do et al., 2005) and PCMA (Pei et al., 2003),

employ a progressive alignment technique (Feng and Doolittle,

1987) that aligns pairs of sequences, and then pairs of sequence

collections, starting from the most similar sequences and

continuing until all sequences contribute to the alignment.

These algorithms detect sequence similarity as a preliminary

step and use the results to construct a guide tree that drives the

actual alignment process. Once an initial solution containing all

sequences is available, a refinement stage (Wallace et al., 2005)

attempts to use the extra information embodied in the

alignment to improve that solution.
Several algorithms take the set of sequences to align as their

only input, whereas others incorporate information from

multiple heterogeneous sources (Notredame et al., 2000).

Even the latter primarily restrict themselves to observations

of the input dataset, for example, the secondary structure

locations on the inputs (O’Sullivan et al., 2004). When the

number of sequences is small or the collection has low pairwise

similarity, less information is available for these algorithms to

construct an alignment. The information content can be

increased by turning sequences into position-specific profiles

based on the similarity of each sequence to members of a

database, and then aligning the profiles instead of the original

sequences (Simossis and Heringa, 2004). Alignment to a profile

is significantly more sensitive to subtle relationships between

sequences (Gribskov et al., 1987; Marti-Renom et al., 2004).

The traditional drawback to use of profiles has been the

computational expense of constructing them, for example, via

iterated PSI-BLAST searches against a large protein database.

We see three relatively underexplored opportunities for

further development in the field of multiple alignment:

(1) The use of biologically relevant information encoded

in databases such as the conserved domain

database (Marchler-Bauer et al., 2005) (CDD) and

PROSITE (Hulo et al., 2006) for improving the quality

of multiple alignments. CDD is a curated collection of*To whom correspondence should be addressed.

Published by Oxford University Press 2007
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt
http://creativecommons.org/licenses/


profiles derived from aligned protein families, whereas

PROSITE is a database of regular expressions represent-

ing motifs. Using independent, curated, biologically

significant databases has the additional advantage of

potentially improving the alignment quality automati-

cally as and when these databases are updated to

represent a larger number of protein families or motifs.

PROSITE patterns were used by Du and Lin (2005)

to constrain multiple alignments, but we are not aware

of any multiple alignment tool that has attempted to

utilize CDD.

(2) The use of local pairwise similarity present in multiple

sequence pairs to highlight similar regions in otherwise

divergent sequences. Local alignments can also constrain

global alignment to improve performance, because the

presence of a constraint reduces the size of the space that

a dynamic programming implementation must search for

an optimal pairwise alignment. Some algorithms, such as

T-Coffee (Notredame et al., 2000) and DbClustal

(Thompson et al., 2000), do use libraries of pairwise

alignments, but they do not attempt to explicitly choose

alignments present in multiple pairs.

(3) An easy way for users to specify regions they want to

see aligned in any multiple alignment computed. User

input can be particularly useful when user knowledge

is not reflected in sequence similarity. Such a capability

was added to a semi-automatic version of DIALIGN

(Morgenstern et al., 1998) by Morgenstern et al. (2006).

Other methods (for example, SALIGN in MODELLER

(Marti-Renom et al., 2004)) include the option for

a user to specify constraints when aligning sequences

and structures.

We explore these three areas with COBALT (constraint-based

alignment tool), a new multiple alignment algorithm for protein

sequences.
COBALT has a general framework that uses progressive

multiple alignment to combine pairwise constraints from

different sources into a multiple alignment. COBALT does

not attempt to use all available constraints (for example, via

algorithms used by Myers et al. (1996)) but uses only a high-

scoring consistent subset that can change as the alignment

progresses, where a set of constraints is called consistent if all

of the constraints in the set can be simultaneously satisfied by

a multiple alignment. Using the RPS-BLAST tool (the core

search algorithm for the service described by Marchler-Bauer

and Bryant (2004)), we can quickly search for domains in

CDD that match to regions of input sequences. When the same

domain matches to multiple sequences, we can infer several

potential pairwise constraints based on these domain matches.

Furthermore, CDD also contains auxiliary information that

allows COBALT to create partial profiles for input sequences

before progressive alignment begins, and this avoids computa-

tionally expensive procedures for building profiles. We use

PROSITE patterns for making constraints only in the

refinement stage since using them in the initial stages gave

worse performance (data not shown). This is likely because

PROSITE patterns are much shorter than domains from CDD

and as such are more likely to give spurious matches. COBALT

also retains a maximum consistent subset of any user-specified

pairwise constraints by giving these constraints a priority higher

than that for any constraint derived by other means.
We tested COBALT on five different multiple alignment

benchmark sets. Compared with ClustalW, MUSCLE,

ProbCons and PCMA, COBALT achieves the highest or

close to highest average alignment quality, although all five

programs perform similarly on many of these benchmarks.

Here, the figure of merit is the percentage of letter pairs in

computed alignments that match those in the conserved regions

of reference alignments. Use of CDD searches improves

COBALT’s average alignment quality by �3%, and use of

local alignments significantly improves alignment quality in

benchmarks such as Implanted Rose Motifs base (IRMbase)

(see Table 1). We also show that the alignments reported by

various alignment algorithms differ significantly, and this

is an important consideration when making conclusions

based on multiple alignment produced by any tool (Ogden

and Rosenberg, 2006).

The runtime performance of COBALT is highly data driven,

but we find empirically that our implementation is about two

times slower than MUSCLE and comparable to ProbCons

and PCMA unless the number of sequences exceeds about

a dozen, in which case COBALT is about five times faster than

ProbCons. COBALT, therefore, represents a good compromise

between alignment quality and runtime requirements and may

be a good choice when one does not want to try multiple tools.

We expect to incorporate COBALT into various NCBI

resources and make further enhancements to improve

COBALT’s speed and/or accuracy.

In the next section, we describe the methods used by

COBALT to find constraints and generate a guide tree,

along with the heuristics for aligning subsets of sequences

presented by the guide tree. This section also describes five

benchmarks used for evaluating COBALT. The Results section

compares alignment quality achieved by COBALT with that

of ClustalW, MUSCLE, ProbCons and PCMA on the five

benchmarks. We close with a discussion of related work and

open problems.

2 MATERIALS AND METHODS

COBALT is included in the NCBI Cþþ Toolkit. Numerous auxiliary

programs were written in C, Cþþ and Perl to automate testing and

summarize results. Splus version 6.0 was used to run Friedman’s rank

sum test.

2.1 Scoring a multiple alignment

The traditional method of scoring an alignment between a pair of

sequences is to use a score matrix based on log-odds scores, such as the

PAM or BLOSUM series of matrices. When there are more than a few

sequences, the information content in a multiple alignment can be

measured by its entropy. A small number of sequences, or correlations

between residues, can have a harmful effect on an entropy-based

scoring measure. Partitioning residues into a smaller number of residue

classes can sometimes dampen this effect.

The intuition used by Tharakaraman et al. (2005) is to combine ideas

behind log-odds and entropy-based scoring. This method scores a
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multiple alignment by measuring how well individual sequences agree

with the overall alignment. We extend these ideas to account for gaps in

multiple alignments. We also partition the residues into ten classes

when scoring a multiple alignment. The score assigned to a column i,

denoted by CS(i), within a multiple alignment is given by:

X
jjcij>0

cij
N

log
N� 1

K
þ
cij � 1

pj

� �
� log

ðN� 1ÞðKþ AÞ

K

� �� �
ð1Þ

where cij is the number of sequences whose residue in column i of the

multiple alignment belongs to class j, N is the number of sequences in

the multiple alignment, pj is the sum of background residue frequencies

for residues in class j, A is
P

j pj for classes with non-zero cij and K is

a pseudocount set to two by default. The score for a multiple alignment

is the sum of the scores for all of its columns. Equation (1) was derived

using ideas from Tharakaraman et al. (2005) as follows.

The ‘individual score’ in Equation (7) from Tharakaraman et al.

(2005) is the measure of how similar a residue j in a given sequence S is

to column i of a given profile:

sij ¼ log
cij þ aj
cþ a

� ��
pj

� �

This equation essentially gives the log-odds score of placing residue j in

column i and is also used by PSI-BLAST to calculate expect values.

However, to our knowledge, all applications that use the above

equation ignore columns containing gaps.

For scoring multiple alignments, we can use this formulation by

checking how each sequence S scores against the alignment for the rest

of the sequences. Because cij includes the count for S in the multiple

alignment for S, the count for cij should be decremented by one while

scoring S. Also, since columns with gaps will not have
P

j cij ¼ N,

we explicitly replace c by N� 1 so as to downweight the score for

columns with gaps. These two substitutions give:

sij ¼ log
ðcij � 1Þ þ aj
ðN� 1Þ þ a

� ��
pj

� �

Because there are cij sequences contributing residue j to column i,

the overall average contribution of residue j to score for column i is:

cij
N
log

ðcij � 1Þ þ aj
ðN� 1Þ þ a

� ��
pj

� �

for a total score of

CSðiÞ ¼
X
jjcij>0

cij
N
log

ðcij � 1Þ þ aj
ðN� 1Þ þ a

� ��
pj

� �
ð2Þ

Next, we use pseudocounts that depend on the background frequencies

of residues. Specifically, we set aj ¼ pj � ðN� 1Þ=K where K is a fixed

constant. This gives:

a ¼
N� 1

K

X
jjcij>0

pj

Using A ¼ f
P

jjcij>0 pjg, and substituting values for aj and a,

Equation (2) becomes:

CSðiÞ ¼
X
jjcij40

cij
N
log

ðcij � 1Þ þ pj
N�1
K

ðN� 1Þ þ N�1
K A

 !�
pj

" #

which is same as Equation (1).

2.2 Algorithm

COBALT is a flexible tool for simultaneously aligning a given set of

protein sequences, where users can directly specify pairwise constraints

and/or ask COBALT to generate the constraints using sequence

similarity, (optional) CDD searches and (optional) PROSITE pattern

searches. COBALT will optionally create partial profiles for input

sequences based on any CDD search results. Aside from these features,

the COBALT algorithm is similar to that of other progressive multiple

alignment tools:

Step 1: Find alignments for generating constraints.

Step 2: Find partial profiles and a pairwise consistent set of

constraints.

Step 3: Generate a guide tree.

Step 4: Create a multiple alignment using the current set of constraints

and guide tree.

Step 5: Create bipartitions and realign.

Step 6: Perform (optional) refinement by determining a new set of

constraints and iterating from Step 4 as long as the number of

constraints keeps increasing.

We do not regenerate the guide tree in the refinement phase, because we

found that the guide tree generated in Step 3 provides a branching order

for progressive alignment that can lead to the desired benchmark

solution, and do not expect that regenerating the tree will improve

result quality. Next, we briefly describe the implementation of the

above steps. In the following, we denote the given set of input protein

sequences by S ¼ fS1,S2, . . . ,SNg, the residues of sequence Si by

r1i , . . . r
m
i where m is the length of Si, and the profile for Si at position j

by f ji½1 . . . k� for the protein alphabet of size k. We use f ji ½0� to represent

the frequency of gaps for Si at position j. From now on, we overload

the term residue to mean an index in a scoring matrix (BLOSUM62 by

default), and also the actual amino acid letter in the sequence.

2.2.1 Finding alignments for generating constraints
(Step 1) RPS-BLAST is used to align each Si to each domain in

the CDD database. For each domain, CDD contains a position-specific

score matrix used for RPS-BLAST alignment, the residue frequencies

that produced the score matrix, and a list of both highly conserved (core

block) and divergent (loop) regions within the domain. For each Si, we

divide each domain match that meets a minimum expect-value

threshold (0.01 by default) into a collection of core blocks, and realign

each individual core block to Si using dynamic programming and the

portion of the domain’s score matrix appropriate for the block. During

realignment, a block may shift position from its location on the original

match up to half the size of the loop region to either side of the block,

and may have gaps added or removed compared to the original match.

Because sequences can be expected to align on block boundaries,

we use only the block alignments for inferring a potential constraint

between Si and Sj, and only if both of them align to the same portion

of a domain.

The BLASTP module of BLAST is used after RPS-BLAST to find

local pairwise sequence similarity in regions where RPS-BLAST fails to

detect possible structural similarities to CDD domains. Each sequence

Si is partitioned into regions that participate in a constraint based on

CDD alignments (domain regions) and regions that do not ( filler

regions). Filler regions of Si are aligned to set S� fSig using BLASTP,

and any match found that exceeds a minimum expect-value (0.01 by

default) becomes a potential pairwise constraint.

Matches against protein motifs from the PROSITE database are

found using PHI-BLAST (Zhang et al., 1998). Each occurrence

of a pattern on Si makes a potential pairwise constraint with each

occurrence of the same pattern on Sj when i 6¼ j.

The initial set of potential constraints is the set of CDD alignments,

pairwise local alignments and any user-specified residue pairs

between sequences. Matches against protein motifs are used only in

the refinement stage.
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2.2.2 Consistent constraints and profiles (Step 2) Pairwise

constraints generated in Step 1 may conflict with each other.

For each pair of sequences with constraints, we find a consistent

subset by determining the maximum-scoring collection of pairwise

constraints between the pair of sequences, such that the sequence ranges

that appear in all constraints are disjoint. Here, the score for a

constraint derived from BLASTP or RPS-BLAST is the alignment

score; user-defined constraints are all given an artificially high score to

preserve the maximum number of user-specified constraints.

If Si aligns to one or more domains in CDD, then we use the

position-specific matrix of residue frequencies for those domains to

create a partial profile for Si in the locations dictated by block

alignments. The domain matches that will contribute residue frequen-

cies are chosen in a greedy manner, where the next domain chosen

does not overlap any domain matches chosen for Si so far, and has

the highest-scoring set of block alignments. Two alignments are said

to overlap in this context, if their range on Si overlaps. We add

only residue frequencies from block alignment regions, boosting the

frequency of the actual letter in each position of Si as follows:

f ji½k� ¼

1 if k ¼ rji and j =2B

0 if k 6¼ rji and j =2B

dþ ð1� dÞ � bj
0

i0 ½k� if k ¼ rji and j 2 B

ð1� dÞ � bj
0

i0 ½k� if k 6¼ rji and j 2 B

8>>><
>>>:

where, domain i 0 contributes its column j 0 to position j of Si, b
j 0

i 0 ½k� is the

frequency of residue k in column j 0 of domain i 0, d is a parameter in the

range (0, 1) used to upweight the frequency of the actual residue at

position j of Si and B is a chosen block alignment. The value of d is user

specified and defaults to 0.5. Although the resulting profiles likely will

not completely cover the input sequences, they do increase the total

information content. If Si has no matches to any domain in CDD, then

the profile for Si simply reflects the residue at each position.

2.2.3 Finding a guide tree (Step 3) The pairwise consistent

constraints found in Step 2 are used to generate a distance matrix.

Let the score between sequence Si and Sj be scoreij, corresponding to the

combined alignment score of all constraints found in Step 2 for this pair

of sequences. The distance between two sequences Si and Sj is

dij ¼ 1�
scoreij

2

� �
�

1

selfi
þ

1

selfj

� �

where selfk is the BLOSUM62 score of aligning Sk to itself. This

distance formula is a slight modification of the metric used by Clarke

et al. (2002) and can be interpreted as the average identity between Si

and Sj. We have found this metric to be robust against disparities

in sequence length while incorporating score matrix information in

a natural way. Pairwise distances become an alignment guide tree via

neighbor joining (Hillis et al., 1996; Saitou and Nei, 1987). The guide

tree can optionally be constructed using fast minimum evolution

(FASTme) (Desper and Gascuel, 2002), but we did not do so in the

results presented here. We note that the results produced using

FASTme were generally comparable to the ones presented here.

2.2.4 Computing the multiple sequence alignment
(Step 4) The progressive multiple alignment does a depth-first

traversal of the tree generated in Step 3. At each node of the tree, we

generate profiles for both subtrees and align these profiles to produce

a multiple alignment for all of the sequences seen thus far.

The profile of a subtree is computed by adding the contribution

from each sequence in the subtree. For the subtree containing Si, the

contribution of sequence Si to position k of column j in the profile is

wi � f
j
i ½k�, where wi is the weight for Si, computed by normalizing

the reciprocals of the distance from each sequence to the subtree root.

In practice, this formulation reduces the contribution of more distantly

related sequences but tends to produce equal weights for all sequences

when the tree is ambiguous.

A variant of ordinary Needleman–Wunsch dynamic programming

computes a global alignment of two profiles. The alignment process

uses well-known techniques to reduce memory consumption (Edgar,

20004a) and includes two variations that are specific to profile

alignments. The first variation is the choice of profile–profile score

function (Edgar and Sjölander, 2004; Wang and Dunbrack, 2004).

Given an amino acid score matrix M and two vectors p and q of residue

frequencies, where vector element i is the frequency of occurrence of

amino acid i, a straightforward generalization for the pairwise score Mij

for aligning amino acid i with amino acid j is

Xk
i¼1

Xk
j¼1

p½i� � q ½ j� �Mij

However, this scoring function has the effect of diluting the profile–

profile score because of the influence of ‘cross-terms’ even when two

profiles are exact copies of each other. A more appropriate scoring

function should assign a high score to pairs of profile columns that

contain similar residue frequency distributions. This suggests a

modification to the above formula:

Xk
i¼1

gi �Mii þ

Pk
i¼1

Pk
j¼1ðp½i� � giÞ � ðq½j� � gjÞ �Mij

1�
Pk

i¼1 gi
ð3Þ

where gi ¼ minðp½i�, q½i�Þ. The first summation is the ‘common score’

for the two profile columns, whereas the second is the contribution

of the cross terms, normalized to preserve the scaling of S. Since cross

terms contribute to the score for only those pairs i and j where p½i� > q½i�

and p½j� < q½j� (so that gi ¼ q½i� and gj ¼ p½j�), their effect is restricted to

only the ‘discrepant portions’ of the two profiles. We ensure that the

second term is computed only if
Pk

i¼1 gi 6¼ 1. We found that limiting

the influence of cross terms improves alignment quality, and because at

least half of the cross terms are zero, the inner loop of the dynamic

programming can avoid many needless computations.

The second variation involves modifying the Needleman–Wunsch

recurrence relations to account for the frequency of gaps in vector p.

Affine gap scoring means that the first gap character incurs a gap-open

penalty Go, while remaining consecutive gaps only incur a gap-

extension penalty Ge. When opening a gap in vector p, we scale the

penalty by the fraction of non-gap characters in q; i.e. the gap open

penalty is:

Go � ð1� q½0�Þ or Go � ð1� p½0�Þ ð4Þ

depending on whether the gap is opened in p or q, respectively.

Similarly, when aligning columns p and q, we add the gap extension

penalty

Ge � ðp½0� � ð1� q½0�Þ þ q½0� � ð1� p½0�ÞÞ ð5Þ

to the profile–profile score. These modifications reduce the cost of

aligning profile regions that contain many gaps, and further improve

alignment quality. Equations (3–5) represent all of the changes to the

dynamic programming recurrence relations needed to align profiles

instead of sequences.

Each alignment of two sequence collections may also incorporate

pairwise constraints that reduce the size of the dynamic programming

lattice to explore. We tabulate constraints that cross from one subtree

to the other, and the highest-scoring consistent subset constrains the

dynamic programming procedure. We also merge identical constraints

in the same profile neighborhood, scaling the constraint score by the

number of constraints merged. The merge process makes it more likely

that constraints appropriate to multiple sequences will influence the

complete profile–profile alignment.
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2.2.5 Alignments by bipartition (Step 5) The initial guide tree

is rooted at its longest edge. In an attempt to undo errors committed by

this arbitrary choice for the root, we isolate a fraction of the longest

edges in the guide tree as possible choices for the root. For each choice,

we partition the current multiple alignment into two sequence

collections separated by that edge and then perform a profile–profile

alignment between the two collections. Each column in the realignment

is scored using Equation 1. For each edge, bipartition repeats up to five

times, or as long as the best score from the current iteration improves

the best score from the previous iteration by at least 2%.

2.2.6 Refinement by finding new constraints (Step 6)
The second refinement phase begins by finding conserved columns in

the output from Step 5. A column in a multiple alignment is considered

to be high scoring if its score exceeds a cutoff (set to 0.67 by default),

and groups of at least two adjacent high-scoring columns are con-

sidered conserved. Iteration continues as long as the number of

conserved columns increases. Before iterating, the set of constraints

found in Step 2 is replaced by constraints that encompass alignment

decisions based on conserved columns, pattern matches and user-

specified pairs.

COBALT uses an all-against-all collection of pairwise constraints to

represent each group of conserved columns. Conserved columns may

contain gaps, but sequences that contain gaps in a conserved column

do not participate in pairwise constraints for that column. This

exception allows conserved columns to be used for most profile–profile

alignments, while generating pressure on slightly misaligned sequences

to shift position.

2.3 Assessment

Most of the development of COBALT was done using BaliBase 2.0

(Bahr et al., 2001), containing 265 alignments divided into eight sets

according to sequence length and percent similarity. These sets

represent a wide variety of multiple alignment problems. We used the

following benchmarks for our tests:

(1) BaliBase 3.0 (Thompson et al., 2005), containing 218 alignments

organized in the same way as BaliBase 2.0, but with larger

sequence collections that contain more outlier sequences.

(2) HOMSTRAD (Stebbings and Mizuguchi, 2004), containing 1032

alignments that represent a large series of known protein families.

(3) IRMbase (Stoye et al., 1998), containing 180 alignments. In this

set, a highly conserved motif is inserted into large, randomly

generated protein sequences, and then edit operations are

performed that simulate evolutionary events on the collection

of sequences. The objective is to recover the conserved motif.

(4) PREFAB 4.0 (Edgar, 2004a), containing 1682 alignments that

consist of two sequences surrounded by a collection of other

similar sequences found by PSI-BLAST. The objective is to

produce a multiple alignment that contains the known structural

alignment of the original pair of sequences.

(5) SABmark (Walle et al., 2005) has 634 sets of sequence pairs, and

the objective is to produce a multiple alignment that simulta-

neously preserves the known structural alignments of all pairs of

sequences in each dataset.

Using these benchmarks, we compared COBALT to ClustalW 1.83,

MUSCLE 3.6, ProbCons 1.10 and PCMA 2.0. Default settings were

used for all programs except for the results presented for COBALT

without some or any additional information. CDD version 2.05 and

PROSITE release 19.0 were used for the COBALT results reported

here. The quality assessment score (Q-score) is an average over all

datasets in a benchmark, where for each dataset we find the percentage

of the letter pairs in the reference alignment that are also aligned in the

computed alignment. BaliBase, PREFAB and IRMbase benchmarks

mark core regions in their reference alignments; for these benchmarks,

we also calculate the Q-score for letter pairs in only the core regions

while considering the whole alignment as a core region for

HOMSTRAD and SABmark.

3 RESULTS

COBALT was developed using BaliBase 2.0 and tested on
BaliBase 3.0, HOMSTRAD, PREFAB, IRMbase and

SABmark multiple alignment benchmarks. Table 1 shows the

Q-score for alignments computed by ClustalW, MUSCLE,

ProbCons, PCMA and COBALT on five reference benchmarks

and their running time. The Q-score restricted to core regions
gives an indication of how well each algorithm finds these

regions. These results show that COBALT achieves the best

score for HOMSTRAD and SABmark. COBALT also achieves

a score comparable to the best score on BaliBase 3.0 (achieved
by ProbCons), PREFAB (achieved by ProbCons) and

IRMbase (achieved by PCMA). Table 1 also shows that

COBALT is significantly faster than ProbCons. The results in

Table 1 for IRMbase show that the isolated nature of all
conserved regions defeats the similarity-detecting heuristics in,

MUSCLE and ClustalW. The datasets from each benchmark,

where COBALT performs the best compared to all algorithms

are bali_20002 (94.3 versus best of 89.4 by PCMA),
hom_SpoU_methylase_N (97.2 versus best of 43.1 by

ProbCons), irm_1_400_4_30_7 (100.00 versus best of 48.9 by

PCMA), 1h9jA_1g291 (63.2 versus best of 21.6 by MUSCLE)

and twi_156 (84.3 versus best of 22.7 by ProbCons).
The average Q-score for a benchmark hides the fact that

there is usually significant variation on any given set. We

quantify the variation in each benchmark, reported in Table 2,
by finding the root mean square deviation in Q-scores for a pair

of tools, and then finding the significance in the difference in

results using Friedman’s rank sum test. We note that although

Table 1. Q-score for COBALT, ClustalW, MUSCLE, PCMA and

ProbCons restricted to core regions on various benchmarks

Tool Benchmark Running

time

Bali HOM IRM PREFAB SAB

ProbCons 86.41 82.03 83.92 71.64 49.59 61 h 31 min

PCMA 85.75 80.37 90.01 69.76 46.27 11 h 57 min

MUSCLE 82.35 80.92 43.22 67.81 45.38 2 h 22 min

ClustalW 75.37 80.23 13.62 61.70 43.56 2 h 25 min

COBALT 84.44 84.40 88.13 67.05 50.50 8 h 54 min

COBALT without some additional information

No patterns 84.36 84.40 88.01 67.01 50.42 8 h 48 min

No freq 82.29 81.65 88.13 65.15 46.63 8 h 48 min

No RPS 81.45 80.03 88.13 64.45 44.30 4 h 19 min

No info. 81.52 80.02 88.01 64.57 44.18 4 h 14 min

Highest Q-score for each benchmark is shown in bold. Rows labeled ‘No

patterns’, ‘No freq’, ‘No RPS’, and ‘No info.’ show results when COBALT is not

constrained by PROSITE patterns, residue frequencies from CDD, any

information from CDD and any PROSITE pattern or CDD, respectively.
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the average performance of all four programs is quite similar on

HOMSTRAD, the tools show large variations in alignment

quality for any particular dataset. Because of this variation,

we think that users should consider using more than one tool,
but if users want to pick one tool, then COBALT provides

a good balance between alignment quality and running time.
As shown in Table 1, using CDD improves the Q-score for

COBALT by a few percentage points, whereas PROSITE

patterns have a negligible effect on the results. This shows that

there are gains to be made by utilizing resources containing

information about protein domains, and also shows that the
algorithm used by COBALT to make an alignment, even

without using any additional information (Table 1, row labeled

‘No info.’), is comparable to that of current state-of-the-art

multiple alignment algorithms.

4 DISCUSSION

COBALT is a general framework for transforming pairwise

constraints among multiple protein sequences into a multiple

sequence alignment. The constraints may arise from several

unrelated sources, and in particular may include constraints

derived from direct user input. We believe that by making
COBALT more aware of what is already known about proteins

and captured in publicly available resources, COBALT has a

better chance of producing a biologically meaningful multiple

alignment compared to tools that do not utilize this informa-

tion. The alignment process itself includes several heuristics
for combining constraints and aligning sequences represented

as frequency profiles. The result is an algorithm whose

performance matches or exceeds that of the best current

methods and still achieves reasonable running time.
Our current implementation uses searches against the

PROSITE database of protein-motif regular expressions and

against the CDD of protein domains. We expect COBALT

alignment quality to improve as the underlying resources
continue to evolve. Future efforts will investigate the applic-

ability of additional information such as secondary structure

alignments computed with recent algorithms (Shindyalov and

Bourne, 1998; Zhou and Zhou, 2005) and the detection of short

highly conserved motifs found with de novo methods (Neuwald

et al., 1997; Rigoutsos and Floratos, 1998). We are particularly

interested in finding robust and computationally inexpensive

motif-finding tools, as we find that PROSITE patterns longer

than three letters are highly selective: performing the pattern

search procedure on the datasets comprising BaliBase 2.0 shows

that over 90% of the resulting constraint positions agree exactly

with the reference alignment.
Progressive multiple alignment algorithms all have difficulty

with highly divergent sequence inputs, and so COBALT may

also benefit from incorporating alignment algorithms that

explicitly process more than two sequences or sequence

collections at a time (Kececioglu and Starrett, 2004; Schroedl,

2005; Zhang and Kahveci, 2006). Unfortunately, preliminary

investigations show that these measures invariably require

excessive computational resources.
We are also examining ways to improve performance in the

case where the similarity between input sequences is high. It is

especially desirable to avoid the need for RPS-BLAST against

CDD if there is no need to deduce subtle structural relationships

between inputs, and COBALT should be able to detect this

situation and avoid unnecessary work that accounts for a large

portion of the algorithm’s runtime. Because RPS-BLAST easily

runs in parallel, we are also considering parallelizing at least

some computations in COBALT as part of continuing develop-

ment and optimization.
Finally, we have implemented COBALT as a library in the

NCBI Cþþ Toolkit and expect to incorporate the algorithm into

NCBI resources and into user tools such as alignment editors.
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Table 2. Root mean square deviation of Q-score for COBALT, ClustalW, MUSCLE, PCMA and ProbCons restricted to core regions on various

benchmarks

Tool Bali HOM IRM PREFAB SAB

COBALT versus ProbCons 6.71 (�s) 9.34 (s) 16.61 (0.8175) 16.39 (�s) 9.98 (0.1208)

COBALT versus PCMA 8.76 (�0.001) 11.60 (s) 15.27 (�s) 17.35 (�s) 12.99 (s)

COBALT versus MUSCLE 10.32 (0.0094) 10.07 (s) 51.66 (s) 16.48 (�0.0011) 13.05 (s)

COBALT versus ClustalW 16.88 (s) 12.37 (s) 76.92 (s) 20.89 (s) 14.51 (s)

ProbCons versus PCMA 7.02 (0.0011) 8.17 (s) 17.56 (�0.0017) 13.23 (s) 9.01 (s)

ProbCons versus MUSCLE 9.69 (s) 6.22 (s) 46.68 (s) 13.49 (s) 9.91 (s)

ProbCons versus ClustalW 17.31 (s) 9.75 (0.0004) 73.04 (s) 20.87 (s) 13.43 (s)

PCMA versus MUSCLE 10.97 (s) 7.94 (0.4581) 54.01 (s) 14.90 (0.0427) 9.46 (0.09)

PCMA versus ClustalW 17.32 (s) 5.93 (�0.1797) 79.14 (s) 18.97 (s) 11.77 (s)

MUSCLE versus ClustalW 13.21 (s) 8.64 (�0.1933) 36.73 (s) 18.36 (s) 10.41 (0.0059)

Significance is given in brackets and is calculated using Friedman’s rank sum test, where the value ‘(s)’ means a P-value of <1E�10. A negative P-value means that the

method on the right performed better (had a lower average rank) than the method on the left.
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